Benjamin Canou, Emmanuel Chailloux and Jérome Vouillon

How to Run your Favorite Language on Web Browsers

The Revenge of Virtual Machines

Paris, le 4 octobre 2011
WWW 2012, Lyon, France



Introduction




Introduction 3/20

What ?
» You have a favorite language
» You have just designed or extended one

» You want to run it on a Web browser

Why ?
» To program a new Web app
» To program your client with the same language than your server

» To run an online demo of an existing app



Introduction 4/20

How ?
» Use applets
» Write an interpreter in JavaScript

» Write a compiler to JavaScript

Or as we present in this talk:
» Reuse the language bytecode compiler
» Write a bytecode interpreter in JavaScript

» Write a bytecode to JavaScript expander



Introduction 5/20

An experiment report:
» Project Ocsigen: use OCaml to code entire Web apps
» OBrowser: an OCaml bytecode interpreter

» js_of _ocaml: an OCaml bytecode expander

Retrospectively, a good approach:
» Reasonable time to obtain a first platform
» Good performance achievable

» Fidelity to language/concurrency models



Core techniques




Bytecode interpretation (1/3)

7/20

Main method:

Make the bytecode file network compliant (ex. JSON array)
Choose/implement the representation of values

Write a minimal runtime and standard library

Write the main interpretation loop

I

Run tests and extend the library as needed

Possible improvements:
» Use core, well supported/optimized JavaScript structures
» Use simple, array based memory representation

» Preliminary bytecode cleanup pass



Bytecode interpretation (2/3) 8/20

Pros:

» Fairly simple architecture

v

Debug/adjustments using step-by-step execution

v

The original VM can be used as a reference

» Semantics preservation

v

Acceptable performance

Cons:

» Impossible to obtain great performance



Bytecode interpretation (3/3) 9/20

Experiment: OBrowser
» Bytecode for the OCaml virtual machine
» A few weeks to develop and debug
» Performance < 10x JavaScript equivalents

» Runs existing OCaml programs, compiled with unmodified ocamlc

v

Actually usable to start writing Web apps in OCaml

Demo: a Boulder Dash clone

» Uses the DOM and HTML elements for the interface

v

Event handlers in OCaml

v

Loads levels via HTTP requests

v

In pretty standard OCaml style



Bytecode expansion (1/3) 10/20

Basic method:

1. Reconstruct the control flow graph
2. Expand every basic block to a JavaScript function

3. Expand every bytecode to javascript instructions

Necessary improvements (For code size:
» Intra-procedural expression reconstruction

» Dead code elimination

Possible improvements:
» Finer (than function only) basic block mapping
» Run-time inlining

» Any compiler optimization



Bytecode expansion (2/3) 11/20

Pros:
» Potential great performance
» Easier to write than a from-source compiler

» Lower maintenance cost than a from-source compiler

Cons:
» More difficult to write than an interpreter
» Takes more time to see your first program running

» Easier to introduce bugs/more difficult to debug



Bytecode expansion (3/3) 12/20

Experiment: js_of_ocaml
» Compiles OCaml bytecode to JavaScript

» Runs existing OCaml programs, compiled with unmodified ocamlc

v

Excellent performance

» A few concessions to semantics preservation

Demos:
» Real time 3D software rendering
» OCaml compiler and interactive prompt

» An SMT solver in the browser!



Comparison of approaches 13/20

Compiler ‘ VM ‘ Expanser

Simplicity + ++ +
Semantics preservation ++ +++ ++
Maintenance + 4+ +++
Performance +++ + ++
Concurrency ++ +++ +




The proposed approach 14/20

1. Write a bytecode interpreter
Start writing a bytecode expander if performance is required
When the interpreter is ready, you can start developing your Web app

Use the expander in production

I

The interpreter can be used for debugging



Advanced topics




Concurrency 16/20




Interoperability 17/20




Specific traits / caveats 18/20

» Mutable strings



Conclusion




Conclusion 20/20




	Introduction
	Core techniques
	Advanced topics
	Conclusion

